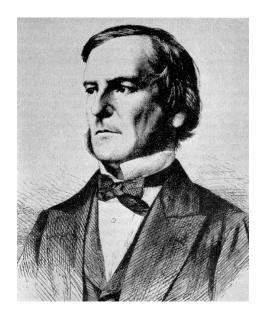
Logical Operators

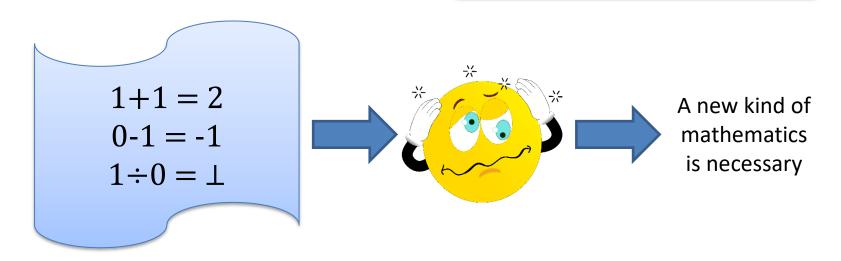

Networks and Embedded Systems

First Grade Level

Wolfgang Neff

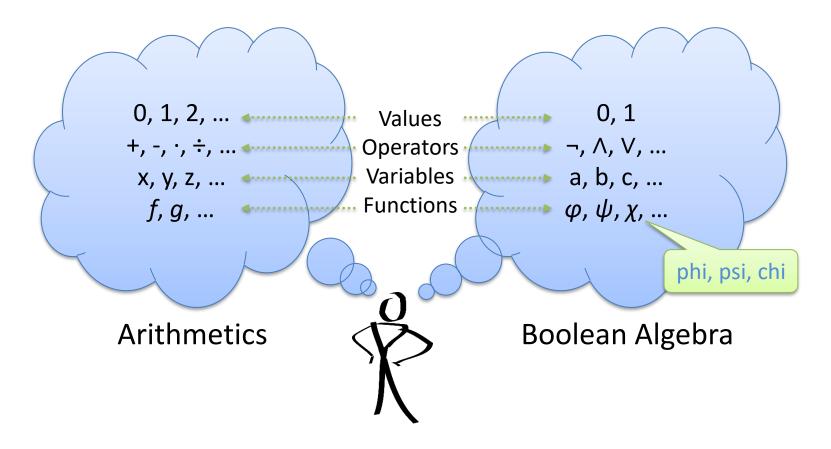
Boolean Algebra (1)

- George Boole
 - British mathematician and philosopher
 - Mathematical foundation of computer science



- * 2 Nov 1815 in England
- + 8 Dec 1864 in Ireland

Boolean Algebra (2)


- Calculating with Truth
 - True $\rightarrow 1$
 - False $\rightarrow 0$

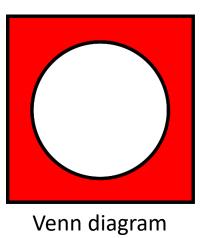
Something that can be true or false. Calculating with truth is difficult.

Boolean Algebra (3)

A new kind of mathematics

Logical Operators (1)

- Operate on logical values
 - True/False, On/Off, High/Low, 1/0
- Alternative terms
 - Logical operator
 - Logical connective
 - Boolean operator
 - Logical value
 - Truth value
 - Boolean value

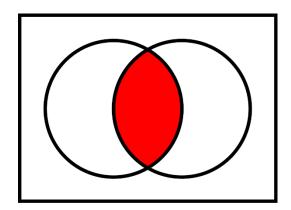

Logical Operators (2)

Negation

- Symbol: \neg (NOT, sometimes $\neg A \rightarrow \bar{A}$)
- Meaning: logical not (contrary of ...)
- Definition:

а	−a
0	1
1	0

Truth Table

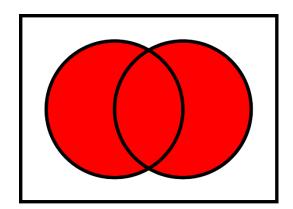

Logical Operators (3)

Conjunction

– Symbol: Λ (AND)

Meaning: logical and (both must be true)

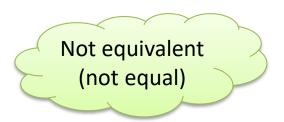
•	а	b	a∧b
	0	0	0
	0	1	0
	1	0	0
	1	1	1


Logical Operators (4)

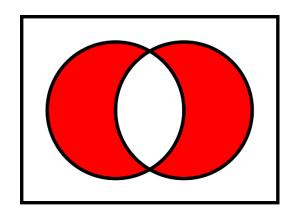
Disjunction

– Symbol: V (OR)

Meaning: logical or (at least one must be true)


•	a	b	a∨b
	0	0	0
	0	1	1
	1	0	1
	1	1	1

Logical Operators (5)

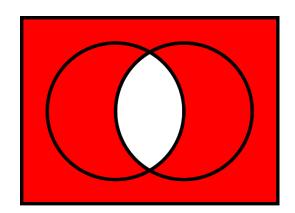

Antivalence

– Symbol: \bigoplus (XOR, also \leftrightarrow or \lor)

- Meaning: exclusive OR (one but not both must be true)

•	а	b	a⊕b
	0	0	0
	0	1	1
	1	0	1
	1	1	0

Logical Operators (6)


Alternative Denial (Sheffer stroke)

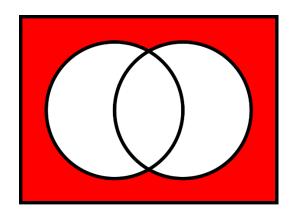
- Symbol: | (NAND, also ↑ or ⊼)

There is no alternative

Meaning: negation of AND (at least one must be false)

•	а	b	a b
	0	0	1
	0	1	1
	1	0	1
	1	1	0

Logical Operators (7)


Joint Denial (Peirce arrow)

- Symbol: ↓ (NOR, also ▽)

Meaning: negation of OR (both must be false)

•	а	b	a↓b
	0	0	1
	0	1	0
	1	0	0
	1	1	0

Laws of Logic (1)

- Double Negation
 - It is not true that it is not true
 - It is true
 - Expressed as a formula
 - ¬(¬a) ↔ a
 - Proof

а	¬ a	¬ ¬ a
0	1	0
1	0	1

Laws of Logic (2)

- De Morgan's Law
 - Negation of parentheses
 - Not (A and B) is equal to not A or not B
 - Not (A or B) is equal to not A and not B
 - Expressed as a formulas
 - $\neg(a \land b) \longleftrightarrow \neg a \lor \neg b$
 - $\neg(a \lor b) \leftrightarrow \neg a \land \neg b$

Laws of Logic (3)

- De Morgan's Law (continued)
 - Example
 - All numbers not between 1 and 5
 - $\stackrel{1}{\neg}$ (n≥1 ∧ n≤5) \rightarrow \neg (n≥1) ∨ \neg (n≤5) \rightarrow n<1 ∨ n>5 \rightarrow ...,-1,0,6,7,...
 - $-\neg(n\geq 1 \land n\leq 5) \nrightarrow n\leq 1 \land n\geq 5 \rightarrow \emptyset \rightarrow \text{there are no such numbers}$

Keep in Mind! It's Important

NAND Form

- Complete set of logical operators
 - NOT, AND, OR
 - NAND (or NOR)
 - Just one operator (and easy to realize on silicon)
- Transformation
 - $-\neg A \rightarrow A \mid A$
 - $-A \wedge B \rightarrow (A \mid B) \mid (A \mid B)$
 - $-AVB \rightarrow (A|A)|(B|B)$

