Electric Circuits

Networks and Embedded Systems

First Grade Level

Wolfgang Neff

Electric Circuit (1)

- Structure
 - Voltage source
 - Battery
 - Electric Load
 - Lamp
 - Electrical wiring
 - Line
 - Cable

Electric Circuit (2)

Basics

- Voltage source
 - A voltage is applied
 - Voltage V, [V] (Volt)
- Electric Load
- Unit
- A current flows through
- Electric current I, [A] (Ampere)
- Conventional direction of current
 - The current flows from plus (+) to minus (-)

Electric Circuit (3)

Electric Circuit

- Resistor
 - A load hinders the current
 - Resistance R, $[\Omega]$ (Ohm)
- Power
 - A load consumes power
 - Power P, [W] (Watt)
- Formulas

•
$$R = \frac{V}{I}$$
, $P = V \cdot I$

Electric Circuit (4)

Exercise

- If a voltage of 5 V is applied to a lamp and a current of 20 mA flows through it
- What is the resistance of the lamp?

•
$$R = \frac{V}{I} = \frac{5 V}{20 mA} = \frac{5 V}{0.02 A} = 250 \Omega$$

– What power is consumed?

•
$$P = V \cdot I = 5 V \cdot 20 \ mA = 5V \cdot 0.02 \ A = 0.1 \ W$$

•
$$P = 0.1 W = 100 mW$$

Electric Circuit (5)

- Rules of Thumb
 - The current flows from plus (+) to minus (-)
 - Current is measured at a point
 - It flows through this point
 - It flows for example through a load
 - Voltage is measured between two points
 - It is applied at these points
 - Often one of these points is ground
 - Ground, GND \rightarrow 0 V

Electric Circuit (6)

- Rules of Thumb
 - Electric Current can flow only if ...
 - ... the electric circuit is closed

• ... there is a voltage difference

Unit Prefixes (1)

- Physical quantities
 - Have a magnitude
 - Should not have more than three digits
 - Should not have a decimal point
 - Exception: Circuit Diagrams (e. g. 2k2)
 - Have a unit
 - Prefixes are used to respect these rules

Unit Prefixes (2)

- Decimal unit prefixes (SI)
 - In technical applications powers of three are used
 - Centi and deci are usually not used

Text	Symbol	Value	Factor	Power	
Giga	G	Billion	1 000 000 000	10 ⁹	1
Mega	M	Million	1 000 000	10 ⁶	
Kilo	k	Thousand	1 000	10 ³	
-	-	One	1	10 ⁰	
Milli	m	Thousandth	0.001	10 ⁻³	
Micro	μ	Millionth	0.000 001	10 ⁻⁶	
Nano	n	Billionth	0.000 000 001	10 -9	1

Unit Prefixes (3)

- Binary unit prefixes (IEC)
 - One uses powers of 1024
 - $2^{10} = 1024 \rightarrow \text{Quite close to } 1000$
 - There are texts and symbols of it's own
 - But they are seldom used

Text	Symbol	Factor	Power	Power
Gibi	Gi	1 073 741 824	1024 ³	2 ³⁰
Mebi	Mi	1 048 576	1024 ²	2 ²⁰
Kibi	Ki	1 024	1024 ¹	2 ¹⁰
-	-	1	1024 ⁰	20