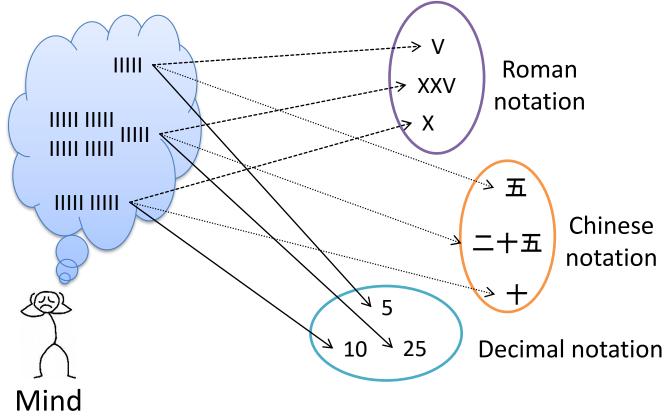
Number Systems

Networks and Embedded Systems First Grade Level Wolfgang Neff

Number Systems (1)

- Numbers are abstract
 - They exist in mind, only
 - They have to be represented



Three apples

The apples are eaten up. What happened with the three?

Number Systems (2)

• Representation of Numbers

Decimal System (1)

- Our number system has 10 digits - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- The value of a digit depends on its place

thousand	hundred	ten	one		
2	0	1	2		

The value of the place can be calculated

thousand	hundred	ten	one
10 ³	10 ²	10 ¹	10 ⁰

Decimal System (2)

- What value has a series of digits?
 - Count the places starting with zero
 - Calculate the corresponding power of ten
 - Multiply the digit with the value of the place
 - Add up everything

Counting direction

Place	3	2	1	0
Value	10 ³	10 ²	10 ¹	10 ⁰
	1000	100	10	1
Digit	2	0	1	2

Decimal System (3)

- What is the value of 2012?
 - $-2012_{dec} = 2 \cdot 10^3 + 0 \cdot 10^2 + 1 \cdot 10^1 + 2 \cdot 10^0$
 - $-2012_{dec} = 2.1000 + 0.100 + 1.10 + 2.1$
 - 2012_{dec} = 2012
- We are familiar with the decimal system
- We know the value without calculation
- $2012_{dec} \rightarrow decimal number$

Decimal System (4)

- What are the digits of a given value?
 - Divide by ten again and again
 - Note the remainder of the division
 - Stop if the result is zero
 - Read the remainders from the bottom up

Decimal System (5)

- What are the digits of 2012?
 - $2012 \div 10 = 201$ remainder 2
 - 201 ÷ 10 = 20 remainder 1
 - $20 \div 10 = 2$ remainder 0

remainder 2

reading direction

$$2 \div 10 = 0$$

Calculation stops here

- The result is 2012_{dec}
- We know the digits without calculation We are familiar with the decimal system

Decimal System (6)

- Let's assume a certain number of digits
 - How many numbers can be represented?
 - Ten to the power of number of digits
 - What is the largest number?
 - Put the largest digit on every position
 - Count of all possible numbers minus one
- Suppose there are four digits
 - Count of numbers: 10⁴ = 10000 (0 ... 9999)
 - Largest number: 9999 or 10000-1 = 9999

Count of numbers minus one

Largest digit at every position

Hexadecimal System (1)

- The hexadecimal system has 16 digits - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- The characters represent the values

Α	В	С	D	E	F
10	11	12	13	14	15

• The value of the places can be calculated

Place	3	2	1	0
Value	16 ³	16 ²	16 ¹	16 ⁰

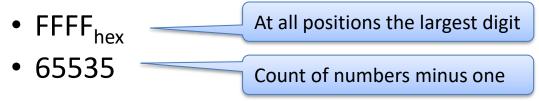
Hexadecimal System (2)

- What is the value of 2012_{hex}?
 - $-2012_{hex} = 2 \cdot 16^3 + 0 \cdot 16^2 + 1 \cdot 16^1 + 2 \cdot 16^0$
 - $-2012_{hex} = 2.4096 + 0.256 + 1.16 + 2.1$
 - 2012_{hex} = 8210
- The hexadecimal system is strange
- We have to calculate the value
- $2012_{\underline{hex}} \rightarrow hexadecimal number$

Hexadecimal System (3)

- What are the digits of 2012?
 - 2012 ÷ 16 = 125 remainder 12 (C) 1
 - 125 ÷ 16 = 7 remainder 13 (D)

reading direction


Calculation stops here

7÷16 =

- The result is 7DC_{hex}
- We do not know the digits without calculation
 We are not familiar with the hexadecimal system

Hexadecimal System (4)

- Suppose there are four hexadecimal digits
 - How many numbers are there in total?
 - $16^4 = 65536$
 - What is the largest number?

Hexadecimal System (5)

- Summary
 - From representation to value
 - $7DC_{hex} \rightarrow 2012$ Hexadecimal representation \rightarrow decimal value
 - Multiplication with place values
 - From value to representation
 - $2012 \rightarrow 7DC_{hex}$ Decimal value \rightarrow hexadecimal representation
 - Division by base

Binary System (1)

- The binary system has 2 digits
 -0, 1
- What is the value of 1011_{bin} ? $-1011_{bin} = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$ $-1011_{bin} = 1 \cdot 8 + 0 \cdot 4 + 1 \cdot 2 + 1 \cdot 1$ $-1011_{bin} = 11$

Binary System (2)

- What are the digits of 11?
 - 11 ÷ 2 = 5 remainder 1
 - $5 \div 2 = 2$ remainder 1
 - $2 \div 2 = 1 remainder 0$

$$- 1 \div 2 = 0$$

remainder 0

remainder 1

reading direction

Calculation stops here

• The result is 1011_{bin}

Binary System (3)

- Suppose there are four binary digits
 - How many numbers are there in total?

• 2⁴ = 16

- What is the largest number?
 - 1111_{bin} _____ At all positions the largest digit
 15 Count of numbers minus one
- Common terms
 - One binary digit = 1 bit
 - Eight binary digits = 1 byte
 - Series of binary digits = bit string

Number Systems (3)

- Number systems are universal
 - They work with any number of digits
- Examples
 - Octal system
 - 8 digits
 - Old representation for data bytes
 - Base64
 - 64 digits
 - Used to transfer binary data by email

Number Systems (4)

Number systems are laborious

One has to calculate a lot

- Sometimes there is a simpler method
 - Binary \rightarrow decimal
 - Decimal \rightarrow binary
 - Binary \rightarrow hexadecimal
 - Hexadecimal \rightarrow binary

Fast Conversions (1)

- From binary to decimal
 - Note ... 8 4 2 1 over the positions
 - Start with one beginning at the right hand side
 - Go ahead to the left and double the number
 - Add the values of all positions with a one

Fast Conversions (2)

• What is the value of 10110011_{bin}?

128	64	32	16	8	4	2	1
1	0	1	1	0	0	1	1

-128 + 32 + 16 + 2 + 1 = 179

• The value of 10110011_{bin} is 179

Fast Conversions (3)

- From decimal to binary
 - Double one until it is larger than the value
 - Try to subtract the half of this number
 - Note 1 if it is possible
 - Note 0 if it is not possible
 - Continue until one is reached again
 - The digits noted are the binary number

Fast Conversions (4)

- What are the digits of 179?
 - Double one until it is larger than the value
 - 1 2 4 8 16 32 64 128 <u>256</u>.
 - Try to subtract the half of this number

179	51	51	19	3	3	3	1
128	64	32	16	8	4	2	1
1	0	1	1	0	0	1	1

179 is 10110011_{bin}

Fast Conversions (5)

- Binary \leftrightarrow Hexadecimal
 - Create a table
 - On the left there are the hexadecimal digits
 - On the right there are the corresponding bits

0	0000	4	0100	8	1000	С	1100
1	0001	5	0101	9	1001	D	1101
2	0010	6	0110	Α	1010	E	1110
3	0011	7	0111	В	1011	F	1111

Fast Conversions (6)

- Hexadecimal \rightarrow Binary
 - Proceed digit by digit
 - Look up the bit pattern in the table
- What are A7_{hex} and BC_{hex} as binary numbers
 - $A7_{hex} \rightarrow 1010\ 0111_{bin}$
 - $BC_{hex} \rightarrow 1011 \ 1100_{bin}$

Fast Conversions (7)

- Binary \rightarrow Hexadecimal
 - Starting from the right make groups of four
 - Add zeros if necessary
 - Look up the groups of four in the table
- Convert 110100_{bin} and 10111100_{bin}
 - $110100_{bin} \rightarrow 0011\ 0100_{bin} \rightarrow 34_{hex}$
 - $\begin{array}{c} \begin{array}{c} 10111100_{\text{bin}} \rightarrow \begin{array}{c} 1011 \\ 2^{\text{nd}} \text{ group} \end{array} \begin{array}{c} 1100_{\text{bin}} \rightarrow BC_{\text{hex}} \end{array}$

Number Systems (5)

- Decimal and binary do not fit well
 Ten is no power of two
- Hexadecimal und binary fit quite well
 - Sixteen is a power of two (2⁴)
 - Four bits are exactly one hexadecimal digit
 - One hexadecimal digit is exactly four bits
- Bit strings are usually written as hexadecimals
 The bit strings by itself would be much too long

Number Systems (6)

- Application of the hexadecimal system
 - Hex editor
 - A hex editor display the content of a file as a sequence of hexadecimal numbers
 - The content of the file can be changed by changing the hexadecimal numbers

89	50	4E	47	OD	OA	1A	OA	00	00	00	OD	49	48	44	52	<mark>‰PNG</mark> IHDR
00	00	00	01	00	00	00	01	08	02	00	00	00	90	77	53	wS
DE	00	00	00	OE	49	44	41	54	78	DA	62	F8	CF	CO	00	<mark>₽</mark> IDATxÚbøÏÀ.
10	60	00	03	01	01	00	66	FD	9F	24	00	00	00	00	49	.`fýŸ\$ <mark>I</mark>
45	4E	44	ÀΕ	42	60	82										END®B`,

Character Encoding (1)

• **ASCII** (American Standard Code for Information Interchange)

								Low	/er H	lex C	Digit						
		0 1 2 3 4 5 6 7 8 9 A							В	С	D	Е	F				
	0	NUL	SOH	STX	ETX	EOF	ENQ	ACK	BEL	BS	ΗT	LF	VT	FF	CR	SO	SI
т	1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
Higher	2		!	"	#	\$	%	&	Ţ	()	*	+	,	-		/
er H	3	0	1	2	3	4	5	6	7	8	9	:	•	<	=	>	?
Hex	4	@	А	В	С	D	E	F	G	Н	Ι	J	Κ	L	М	Ν	0
Digit	5	Ρ	Q	R	S	Т	U	V	W	Х	Y	Z	[١]	^	_
jit	6	`	а	b	С	d	е	f	g	h	i	j	k		m	n	0
	7	р	q	r	S	t	u	V	W	х	у	Z	{		}	~	DEL

Character Encoding (2)

- Characters are encoded as bit strings
- The code is represented as hexadecimal
- The code can be looked up in the table
- What code have \$ and n?

- \$ \rightarrow row 2, column 4 \rightarrow 24_{hex} \rightarrow 0010 0100_{bin}

 $-n \rightarrow row 6$, column $E \rightarrow 6E_{hex} \rightarrow 0110 \ 1110_{bin}$

higher hex digit

lower hex digit

• Attention: Do not confuse higher und lower hex digit