Number Systems

Networks and Embedded Systems

First Grade Level
Wolfgang Neff

Number Systems (1)

- Numbers are abstract
- They exist in mind, only
- They have to be represented

Number Systems (2)

- Representation of Numbers

Decimal System (1)

- Our number system has 10 digits
$-0,1,2,3,4,5,6,7,8,9$
- The value of a digit depends on its place

thousand	hundred	ten	one
2	0	1	2

- The value of the place can be calculated

thousand	hundred	ten	one
10^{3}	10^{2}	10^{1}	10^{0}

Decimal System (2)

- What value has a series of digits?
- Count the places starting with zero
- Calculate the corresponding power of ten
- Multiply the digit with the value of the place
- Add up everything

Counting direction

Place	3	2	1	0
Value	10^{3}	10^{2}	10^{1}	10^{0}
	1000	100	10	1
Digit	2	0	1	2

Decimal System (3)

- What is the value of 2012 ?

$$
\begin{aligned}
& -2012_{\operatorname{dec}}=2 \cdot 10^{3}+0 \cdot 10^{2}+1 \cdot 10^{1}+2 \cdot 10^{0} \\
& -2012_{\text {dec }}=2 \cdot 1000+0 \cdot 100+1 \cdot 10+2 \cdot 1 \\
& -2012_{\operatorname{dec}}=2012
\end{aligned}
$$

- We are familiar with the decimal system
- We know the value without calculation
- $2012_{\text {dec }} \rightarrow$ decimal number

Decimal System (4)

- What are the digits of a given value?
- Divide by ten again and again
- Note the remainder of the division
- Stop if the result is zero
- Read the remainders from the bottom up

Decimal System (5)

- What are the digits of 2012 ?

- The result is $2012_{\text {dec }}$
- We know the digits without calculation
- We are familiar with the decimal system

Decimal System (6)

- Let's assume a certain number of digits
- How many numbers can be represented?
- Ten to the power of number of digits
- What is the largest number?
- Put the largest digit on every position
- Count of all possible numbers minus one
- Suppose there are four digits
- Count of numbers: $10^{4}=10000$ (0 ... 9999)
- Largest number: 9999 or 10000-1 = 9999

Hexadecimal System (1)

- The hexadecimal system has 16 digits
$-0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$
- The characters represent the values

A	B	C	D	E	F
10	11	12	13	14	15

- The value of the places can be calculated

Place	3	2	1	0
Value	16^{3}	16^{2}	16^{1}	16^{0}

Hexadecimal System (2)

- What is the value of $2012_{\text {hex }}$?

$$
\begin{aligned}
& -2012_{\text {hex }}=2 \cdot 16^{3}+0 \cdot 16^{2}+1 \cdot 16^{1}+2 \cdot 16^{0} \\
& -2012_{\text {hex }}=2 \cdot 4096+0 \cdot 256+1 \cdot 16+2 \cdot 1 \\
& -2012_{\text {hex }}=8210
\end{aligned}
$$

- The hexadecimal system is strange
- We have to calculate the value
- 2012 $2_{\text {hex }} \rightarrow$ hexadecimal number

Hexadecimal System (3)

- What are the digits of 2012 ?

- The result is $7 \mathrm{DC}_{\text {hex }}$
- We do not know the digits without calculation
- We are not familiar with the hexadecimal system

Hexadecimal System (4)

- Suppose there are four hexadecimal digits
- How many numbers are there in total?
- $16^{4}=65536$
- What is the largest number?
- FFFF $_{\text {hex }}$

At all positions the largest digit

- 65535

Count of numbers minus one

Hexadecimal System (5)

- Summary
- From representation to value
- 7DC hex $\rightarrow 2012$ Hexadecimal representation \rightarrow decimal value
- Multiplication with place values
- From value to representation
- $2012 \rightarrow$ 7DC hex Decimal value \rightarrow hexadecimal representation
- Division by base

Binary System (1)

- The binary system has 2 digits
$-0,1$
- What is the value of $1011_{\text {bin }}$?

$$
\begin{aligned}
& -1011_{\text {bin }}=1 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0} \\
& -1011_{\text {bin }}=1 \cdot 8+0 \cdot 4+1 \cdot 2+1 \cdot 1 \\
& -1011_{\text {bin }}=11
\end{aligned}
$$

Binary System (2)

- What are the digits of 11 ?

- The result is $1011_{\text {bin }}$

Binary System (3)

- Suppose there are four binary digits
- How many numbers are there in total?
- $2^{4}=16$
- What is the largest number?
- $1111_{\text {bin }}$

At all positions the largest digit

- 15

Count of numbers minus one

- Common terms
- One binary digit = 1 bit
- Eight binary digits = 1 byte
- Series of binary digits = bit string

Number Systems (3)

- Number systems are universal
- They work with any number of digits
- Examples
- Octal system
- 8 digits
- Old representation for data bytes
- Base64
- 64 digits
- Used to transfer binary data by email

Number Systems (4)

- Number systems are laborious
- One has to calculate a lot
- Sometimes there is a simpler method
- Binary \rightarrow decimal
- Decimal \rightarrow binary
- Binary \rightarrow hexadecimal
- Hexadecimal \rightarrow binary

Fast Conversions (1)

- From binary to decimal
- Note ... 8421 over the positions
- Start with one beginning at the right hand side
- Go ahead to the left and double the number
- Add the values of all positions with a one

Fast Conversions (2)

- What is the value of 10110011_{bin} ?

128	64	32	16	8	4	2	1
1	0	1	1	0	0	1	1

$-128+32+16+2+1=179$

- The value of $10110011_{\text {bin }}$ is 179

Fast Conversions (3)

- From decimal to binary
- Double one until it is larger than the value
- Try to subtract the half of this number
- Note 1 if it is possible
- Note 0 if it is not possible
- Continue until one is reached again
- The digits noted are the binary number

Fast Conversions (4)

- What are the digits of 179 ?
- Double one until it is larger than the value
- $1248163264128 \underline{256}$.
- Try to subtract the half of this number

179	51	51	19	3	3	3	1
128	64	32	16	8	4	2	1
1	0	1	1	0	0	1	1

- 179 is $10110011_{\text {bin }}$

Fast Conversions (5)

- Binary \leftrightarrow Hexadecimal
- Create a table
- On the left there are the hexadecimal digits
- On the right there are the corresponding bits

$\mathbf{0}$	0000	$\mathbf{4}$	0100	$\mathbf{8}$	1000	\mathbf{C}	1100
$\mathbf{1}$	0001	$\mathbf{5}$	0101	$\mathbf{9}$	1001	\mathbf{D}	1101
$\mathbf{2}$	0010	$\mathbf{6}$	0110	\mathbf{A}	1010	\mathbf{E}	1110
$\mathbf{3}$	0011	$\mathbf{7}$	0111	\mathbf{B}	1011	\mathbf{F}	1111

Fast Conversions (6)

- Hexadecimal \rightarrow Binary
- Proceed digit by digit
- Look up the bit pattern in the table
- What are $A 7_{\text {hex }}$ and $B C_{\text {hex }}$ as binary numbers
$-A 7_{\text {hex }} \rightarrow 10100111_{\text {bin }}$
$-\mathrm{BC}_{\text {hex }} \rightarrow 10111100_{\text {bin }}$

Fast Conversions (7)

- Binary \rightarrow Hexadecimal
- Starting from the right make groups of four
- Add zeros if necessary
- Look up the groups of four in the table
- Convert $110100_{\text {bin }}$ and $10111100_{\text {bin }}$
$-110100_{\text {bin }} \rightarrow 00110100_{\text {bin }} \rightarrow 34_{\text {hex }}$
$-10111100_{\text {bin }} \rightarrow \underset{2^{\text {nd }} \text { group }}{1011}{\underset{\text { rt }}{\text { tr }}}_{1100_{\text {bin }}}^{110} \rightarrow B C_{\text {hex }}$

Number Systems (5)

- Decimal and binary do not fit well
- Ten is no power of two
- Hexadecimal und binary fit quite well
- Sixteen is a power of two (2^{4})
- Four bits are exactly one hexadecimal digit
- One hexadecimal digit is exactly four bits
- Bit strings are usually written as hexadecimals
- The bit strings by itself would be much too long

Number Systems (6)

- Application of the hexadecimal system
- Hex editor
- A hex editor display the content of a file as a sequence of hexadecimal numbers
- The content of the file can be changed by changing the hexadecimal numbers

```
89
```


Character Encoding (1)

- ASCII (American Standard Code for Information Interchange)

ASCII		Lower Hex Digit															
		0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
	0	NUL	sor	STX	ETX	EOF	ENQ	ACK	beL	BS	HT	LF	vt	FF	CR	so	SI
	1	dLe	DC1	DC2	DC3	DC4	NaK	Syn	етв	CAN	EM	sub	ESC	FS	GS	RS	US
	2		$!$	"	\#	\$	\%	\&	,	()	*	+	,	-	.	1
	3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
	4	@	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0
	5	P	Q	R	S	T	U	V	W	X	Y	Z	[1]	\wedge	-
	6		a	b	C	d	e	f	g	h	i	j	k	1	m	n	0
	7	p	q	r	s	t	u	v	w	x	y	z	\{	\|	\}	\sim	deL

Character Encoding (2)

- Characters are encoded as bit strings
- The code is represented as hexadecimal
- The code can be looked up in the table
- What code have \$ and n ?
$-\$ \rightarrow$ row 2 , column $4 \rightarrow 24_{\text {hex }} \rightarrow 0010{0100_{\text {bin }}}$
$-\mathrm{n} \rightarrow$ row 6 , column $\mathrm{E} \rightarrow 6 \mathrm{E}_{\text {hex }} \rightarrow 0110{1110_{\text {bin }}}$

higher hex digit lower hex digit

- Attention: Do not confuse higher und lower hex digit

