NAND Form

Please do the following exercises individually.

NAND Form

Please find the NAND form of the following logical functions.

(A∧¬B) ∨ (¬A∧C) = ...

 $(C \land D) \lor (\neg C \land \neg D) = \dots$

D∨(B∧C) = ...

 $D \lor (\neg B \land D) \lor (A \land B \land \neg C) = ...^{1}$

Compound NAND

Please prove that $\neg(a \land b \land c) \nleftrightarrow a |b|c$.

¹ Two 3-input NAND gates are used to realize this truth function. There is no logical operator for this kind of operation. So $\neg(a \land b)$ can be contracted to a | b but $\neg(a \land b \land c)$ cannot. Please see the next exercise for a proof.