Timers and Interrupts

Networks and Embedded Systems
Second Grade Level
Wolfgang Neff

Counters

- Counters count events
 - Number of events stored in a register
 - Each event increments this register

Timers (1)

- Timers count clock ticks
 - Primary source is system clock
 - Clock speed is reduced by a prescaler

$$f_{CLK} = \frac{f_{SYS}}{n}$$

f_{SYS}: System Frequency

f_{CLK}: Clock Frequency

n: Prescaler Value

Timers (2)

Operating mode

Timers (3)

Operating mode (continued)

- Example: TOP = 5

T: timer period, t_{CLK} : clock period

$$T = (TOP+1) \cdot t_{CLK}$$

Timers (4)

Timer Module

CTRL: Control Register

CTRL.EN: Enable Bit

CNT: Counter Value

DIV: Clock Divider

TOP: Top Value

OVF: Overflow

PWM (1)

- Pulse-Width Modulation
 - Digital pins are either high or low
 - Time enables intermediate values
 - Inertia for averaging necessary
 - Alternative: DigitalAnalog Converter

PWM (2)

Generation

PWM (3)

Architecture

PWM (4)

PWM Module

Interrupts (1)

- Generated by hardware
- Indicated by an interrupt line
- Occur unpredictably
- Tell that something happened
- Examples
 - Port interrupt
 - Timer interrupt
 - Data ready interrupt

Interrupts (2)

- Interrupt Processing
 - Execution of code is interrupted
 - Interrupt service route (ISR) is executed
 - Execution of original code is resumed.

Interrupts (3)

- Interrupt Controller
 - Handles Interrupts
 - Queueing
 - Which one is served first?
 - Nesting
 - Based on priority levels
 - Which interrupt interrupts other interrupts?
 - Forwarding
 - Notifies the CPU of an interrupt request (IRQ)

