Inter-Integrated Circuit

Networks and Embedded Systems
Second Grade Level
Wolfgang Neff

$I^{2}C(1)$

Design

Two bidirectional lines

SDA: Serial Data Line

SCL: Serial Clock Line

$I^{2}C(2)$

- Design (continued)
 - Open-drain lines
 - Pulled-up resistors
 - Wired-AND
 - Dominant 0
 - Recessive 1
 - Collision detection

$I^{2}C(3)$

- Data Transfer
 - Start Condition (S)
 - SDA falls while SCL is high
 - Transfer (B_i)
 - Controlled by SCL
 - Stop Condition (P)
 - SDA raises while SCL is high

SCL low → next bit is put on bus → SDA may change

SCL high → data on bus is read → SDA must not change

$I^{2}C(4)$

- Addressing
 - Master addresses slave
 - Address space: 7 bit (10 bit also possible)
 - First byte after start condition is address
 - Eighth bit is read/write indicator
 - 0: write, 1: read
 - Slave replies with ACK

$I^{2}C(5)$

Real-Life Example

I²C (6)

- Advantages
 - Just two lines necessary
 - Multiple masters possible
 - In-band addressing by protocol
 - Official I²C specifications available
 - Supports various modes of operation

$I^{2}C(7)$

- Disadvantages
 - Open-drain design increases power draw
 - Only half-duplex communication possible
 - Address conflicts
 - As slaves often restrict address space
 - No automatic bus configuration
 - Stalled slaves can produce bus faults