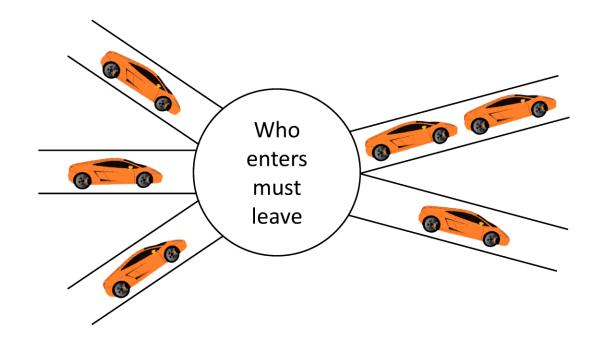

Junctions and Loops

Electrical Engineering
Wolfgang Neff

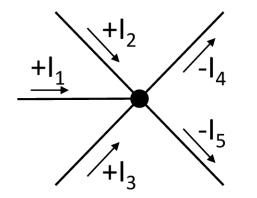
Kirchhoff's Circuit Laws (1)

- Complex Circuits
 - Have multiple voltage sources and resistances
 - What about voltage and current?

Kirchhoff's Circuit Laws (2)


- Kirchhoff's current law
 - What about current?
 - Law of conservation of mass
 - In any closed system the mass cannot change
 - Electrons do not get lost
- Kirchhoff's voltage law
 - What about voltage?
 - Law of conservation of energy
 - In any closed system the amount of energy cannot change
 - What gets produced must be consumed

Kirchhoff's Current Laws (1)


- Electrons do not get lost
- There is no accumulation in the crossway

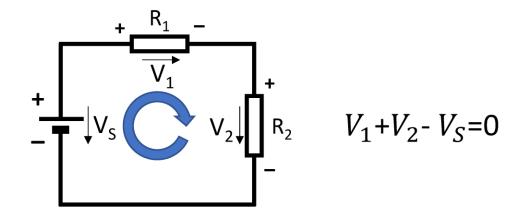
Kirchhoff's Current Laws (2)

- The sum of currents at any point is zero
 - $\sum_{k=1}^{n} I_k = I_1 + I_2 + \dots + I_n = 0$
- Inflowing current is positive
- Outflowing current is negative

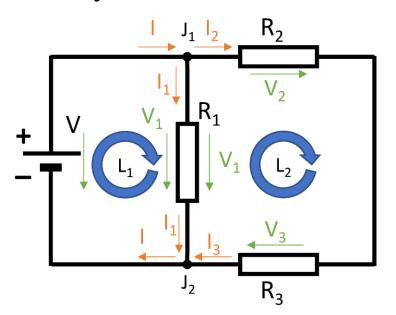
$$I_1 + I_2 + I_3 - I_4 - I_5 = 0$$

Kirchhoff's Voltage Laws (1)

What gets produced must be consumed


There is no accumulation of energy

Kirchhoff's Voltage Laws (2)


- The sum of voltages in a closed loop is zero
 - $\sum_{k=1}^{n} V_k = V_1 + V_2 + \dots + V_n = 0$
- Positive voltages point from plus to minus

Kirchhoff's Circuit Laws (3)

- Complex Circuits have junctions and loops
 - The loops tell us something about the voltages
 - The junctions tell us something about the currents

Loops:

- $L_1: V_1 V = 0$
- $L_2: V_2 + V_3 V_1 = 0$
- $L_3: V_2 + V_3 V = 0$

Junctions:

- $J_1: I I_1 I_2 = 0$
- $J_2: I_1 + I_3 I = 0$