
Electric Motors

Electrical Engineering
Wolfgang Neff

Electric Motors (1)

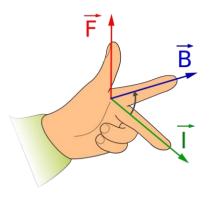
- Electric Machines
 - Motors
 - Convert electricity to mechanical power.
 - Generators
 - Convert mechanical power to electricity.
 - Transformers
 - Transfer electric energy from one electric circuit to another.

Electric Motors (2)

- Kinds of Motors
 - DC motors
 - Are powered by a direct current source.
 - AC motors
 - Are powered by an alternating current source.
 - Stepper motor
 - Driven by a rotating magnetic field.
 - Powered by a special stepper motor driver.
 - Does not turn continuously but step-by-step.

Electric Motors (3)

- Characteristics of Motors
 - Voltage
 - Nominal current
 - Nominal power
 - Power factor
 - RPM (revolutions per sec.)
 - Direction (of rotation)
 - Torque
 - Efficiency

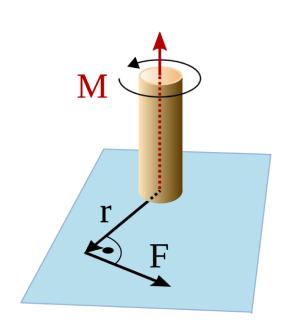


Electric Motors (5)

- Force Produced by Motors
 - It depends on:
 - Magnetic flux density (B)
 - Electric current (I)
 - Number of wires (z)
 - Length of wire (I)
 - The Fleming's left-hand rule shows its direction.

$$F = B \cdot I \cdot l \cdot z$$

$$[B] = T, [I] = A, [I] = m$$


Electric Motors (6)

- Torque Produced by Motors
 - Force of a lever arm
 - M: torque in Nm.
 - r: length of lever arm.

$$M = F \cdot r$$

- Torque on a shaft
 - P: Power in W.
 - n: Revolutions per second.

$$M = \frac{P}{2 \cdot \pi \cdot n}$$

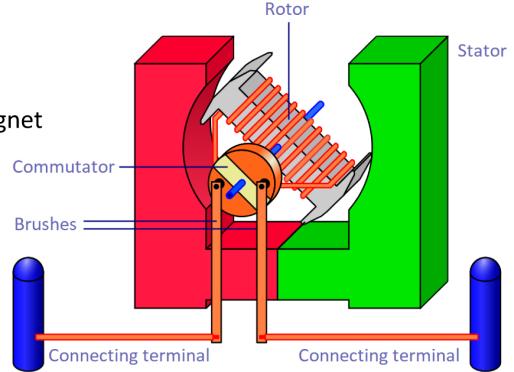
Electric Motors (7)

- Efficiency of a Electric Motors
 - The electric power consumed can not be used totally.
 - There are losses.

$$P_{in} = P_{out} + P_{loss}$$

The efficiency is calculated by:

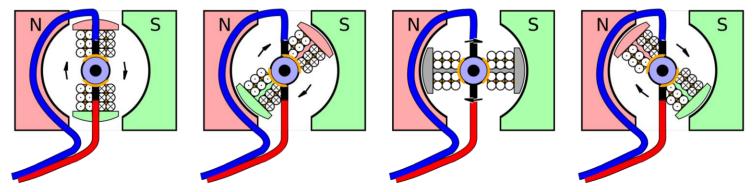
$$\eta = \frac{P_{out}}{P_{in}}$$


• Efficiency is always less than 1 (100%).

DC Motors (1)

Components

- Stator
 - Stationary
 - Permanent magnet
- Rotor
 - Moving
 - Electromagnet
- Commutator
 - Pole changer
 - Brushes



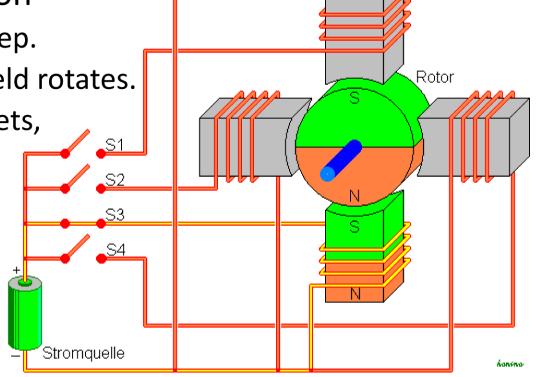
Quelle: https://commons.wikimedia.org/wiki/File:Gleichstrommaschine.svg

DC Motors (2)

- Mode of Operation
 - Poles attract and repulse.
 - At the dead point current is interrupted.
 - After the dead point the poles are changed.

Quelle: https://commons.wikimedia.org/wiki/File:Animation_einer_Gleichstrommaschine_(Variante).gif

Stepper Motor (1)

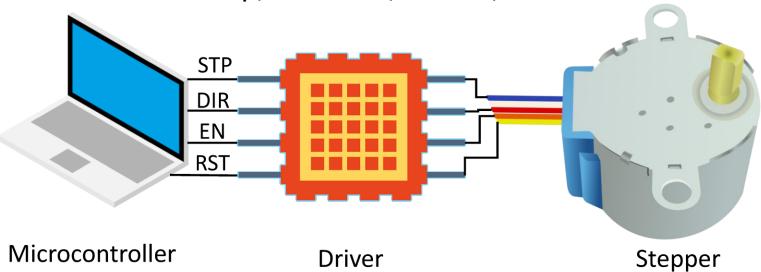

Mode of Operation

• Turns step-by-step.

• The magnetic field rotates.

 The more magnets, the smaller the

steps.



Quelle: https://commons.wikimedia.org/wiki/File:Schrittmotor.PNG

Stepper Motor (2)

- Stepper Motor Drivers
 - The control of stepper motors is complex.
 - It is common to use a special driver.
 - Commands: step, direction, enable, reset.

