

Transistors

Digital Electronics

by Wolfgang Neff

Transistors (1)

- Bipolar Junction Transistor
 - Abbreviation: BJT
 - Two p-n junctions
 - Two different types
 - NPN transistor
 - PNP transistor

N-type
Insulating region
P-type
Insulating region
N-type

P-type
Insulating region
N-type
Insulating region
P-type

Transistors (2)

- Bipolar junction transistor (continued)
 - Applying Voltages
 - Does not help
 - Whatever polarity
 - One junction blocks anyway

Transistors (3)

Bipolar junction transistor (continued)

- Third lead
 - Insulating region vanishes
 - Controls the flow of electric current
 - Acts like a switch

Transistors (4)

- Bipolar junction transistor (finished)
 - Two types
 - NPN transistor
 - PNP transistor
 - Three leads
 - Base
 - Collector
 - Emitter

PNP transistor

Transistors (5)

NPN Transistor

- Current from collector to emitter flows ...
- ... if current flows intothe base
- A positive voltage
 between base and
 emitter is necessary

Transistors (6)

- NPN Transistor (continued)
 - Transistor as switch
 - Load at collector
 - Controlled by base
 - On if $V_{BF} > 0$
 - Off if $V_{BE} = 0$
 - Active high
 - On if base is high
 - Off if base is low

Transistors (7)

- NPN Transistor (finished)
 - Example: BC547
 - Maximum collector current

$$- I_{c} = 100 \text{ mA}$$

Base saturation voltage

$$- V_{BF} = 0.7 V$$

DC current gain

$$-h_{FE} = \frac{I_c}{I_B}$$

Transistors (8)

- PNP Transistor
 - Current from emitter to collector flows ...
 - ... if current flows out of the base
 - A negative voltage
 between base and emitter is necessary

Transistors (9)

- PNP Transistor (continued)
 - Transistor as switch
 - Load at collector
 - Controlled by base
 - On if $V_{BE} < V_{CC}$
 - Off if $V_{BE} = V_{CC}$
 - Active low
 - On if base is low
 - Off if base is high

Transistors (10)

- PNP Transistor (finished)
 - Example: BC557
 - Maximum collector current

$$-I_{c} = -100 \text{ mA}$$

Base saturation voltage

$$- V_{BF} = -0.7 V$$

DC current gain

$$-h_{FE} = \frac{I_c}{I_B}$$
$$-h_{FE} \approx 250$$

Transistors (11)

MOSFET

- Metal-Oxide-Semiconductor
- Field-Effect Transistor
- Controlled by voltage
 - No current necessary
- Used in Chips
 - Integrated Circuits

Transistors (12)

BJT versus MOSFET

