

Minimization

Digital Electronics

by Wolfgang Neff

Minimization (1)

- Truth functions often are very complex
- Minimisation tries to simplify them
- There are several algorithms
 - Karnaugh maps
 - Very descriptive
 - Works only well up to four variables
 - Quine-McCluskey algorithm
 - For more variables
 - Complex and less descriptive

Minimization (2)

- Instruction
 - Get the truth table
 - Make the corresponding Karnaugh map
 - Fill in the Karnaugh terms
 - Find blocks of powers of two (2, 4, 8, ...)
 - Drop variables which are in two regions

Truth Table (1)

- Get the Truth Table
 - Analyze the problem
 - Find the number of occasions out
 - Find the power of 2 that gives enough occasions
 - Create the corresponding truth table
 - Encode the occasions
 - Determine the result for each line
 - Often there are several possible implementations

Truth Table (2)

- Example: Which face of a dice has even pips?
 - A dice has 6 faces
 - We have 6 occasions
 - An exponent of 3 is enough for 6 occasions
 - We need 3 parameters $(2^2 = 4 \le 6 \le 2^3 = 8)$
 - Our circuit has 3 input lines
 - Encoding of the occasions
 - 1 pip \rightarrow 1, 2 pips \rightarrow 2 etc.
 - 1 indicates an even number of pips

Truth Table (3)

• Example: even pips (continued)

Karnaugh Maps (1)

Two variables

Three variables

		a		
¬a∧¬b∧¬c	¬a∧¬b∧c	a∧⊣b∧c	a∧⊸b∧⊸c	
¬a∧b∧¬c	¬a∧b∧c	a∧b∧c	a∧b∧¬c	b
	(-	

Karnaugh Maps (2)

Four variables

					_
	$\neg a \land \neg b \land \neg c \land \neg d$	$\neg a \land \neg b \land c \land \neg d$	a∧¬b∧c∧¬d	a∧¬b∧¬c∧¬d	
d	¬a∧¬b∧¬c∧d	¬a∧¬b∧c∧d	a∧¬b∧c∧d	a∧¬b∧¬c∧d	
	¬a∧b∧¬c∧d	–a∧b∧c∧d	a∧b∧c∧d	a∧b∧¬c∧d	<u></u>
	¬a∧b∧¬c∧¬d	¬a∧b∧c∧¬d	a∧b∧c∧⊸d	a∧b∧¬c∧¬d	b
,	-	(•	

Karnaugh Terms (1)

- Minterms
 - Rows with a result of 1
 - All variables connected by conjunctions
 - Negate variable if they are 0
 - Mark minterms in the map with 1
- Don't-care terms
 - Rows with a result of X
 - Mark don't-care terms in the map with X

Karnaugh Terms (2)

Finding the Terms

Example: even pips

n	а	b	С	φ(a,b,c)	
0	0	0	0	X	X_0
1	0	0	1	0	
2	0	1	0	1	m_0
3	0	1	1	0	
4	1	0	0	1	m_1
5	1	0	1	0	
6	1	1	0	1	m_2
7	1	1	1	X	X_1

Minterms

•
$$m_0 = \neg a \land b \land \neg c$$

•
$$m_1 = a \land \neg b \land \neg c$$

•
$$m_2 = a \land b \land \neg c$$

Don't-care terms

•
$$x_0 = \neg a \land \neg b \land \neg c$$

•
$$x_1 = a \land b \land c$$

Karnaugh Terms (3)

- Filling the Terms in
 - Example: even pips
 - Minterms

$$- m_0 = \neg a \land b \land \neg c$$

$$- m_1 = a \land \neg b \land \neg c$$

$$-m_2 = a \wedge b \wedge \neg c$$

Don't-Care Terms

$$-x_0 = \neg a \land \neg b \land \neg c$$

$$-x_1 = a \wedge b \wedge c$$

Minimization (3)

- Finding the Blocks
 - Simple blocks
 - Minterms
 (¬a∧¬b∧¬c∧d), (¬a∧¬b∧c∧d),
 (a∧¬b∧c∧d), (a∧¬b∧¬c∧d),
 (¬a∧b∧¬c∧d), (¬a∧b∧c∧d),
 (a∧b∧c∧d), (a∧b∧¬c∧d)
 - Result
 φ(a,b,c,d) = d

Minimization (4)

- Finding the Blocks (continued)
 - Blocks with border terms
 - Minterms
 (¬a∧¬b∧¬c∧¬d), (a∧¬b∧¬c∧¬d),
 (¬a∧¬b∧c∧d), (a∧¬b∧c∧d),
 (¬a∧b∧c∧d), (a∧b∧c∧d),
 (¬a∧b∧¬c∧¬d), (a∧b∧¬c∧¬d)
 - Result
 φ(a,b,c,d) = (c∧d) ∨ (¬c∧¬d)

Minimization (5)

- Finding the Blocks (continued)
 - Blocks with recycled terms
 - Minimise the minterms
 (¬a∧¬b∧¬c∧¬d), (¬a∧¬b∧c∧¬d),
 (a∧¬b∧c∧¬d), (a∧¬b∧¬c∧¬d),
 (¬a∧¬b∧c∧d), (a∧¬b∧c∧d),
 (a∧b∧¬c∧d), (¬a∧b∧¬c∧¬d),
 (¬a∧b∧c∧¬d), (a∧b∧¬c∧¬d),
 (a∧b∧¬c∧¬d)

• Result $\phi(a,b,c,d) = \neg d \lor (\neg b \land c) \lor (a \land b \land \neg c)$

Minimization (6)

- Finding the Blocks (continued)
 - Handling don't-care terms
 - Helpful for a better minimization.

Minimization (7)

- Finding the Blocks (finished)
 - Example: even pips

- Switching function $\phi(a,b,c) = \neg c$
- Circuit

(yet to come)