Combinatorial Circuits

Mechanical and Electrical Engineering
Second Grade Level
by Wolfgang Neff

Combinatorial Circuits (1)

- Design of Combinatorial Circuits
 - Problem: Please add two bits
 - Hints
 - If you add two numbers a carry can occur
 - You need not only determine the result but also the carry
 - On the other hand there can already be a carry when you add two numbers
 - You have to handle this carry, too
 - This type of circuit is called full adder
 - Mathematical description of a full adder

-
$$\{0,1\} \times \{0,1\} \times \{0,1\} \mapsto \{0,1\} \times \{0,1\}$$

 $(a,b,c_i) \mapsto (c_o,r)$

Or for short: $\{0,1\}^3 \mapsto \{0,1\}^2$

 c_i : carry in; c_o : carry out; r: LSB of a+b (left most bit)

Combinatorial Circuits (2)

- Design of Combinatorial Circuits (continued)
 - Example of a Binary Addition

Bit position	3	2	1	0
1st Number (7)	0	1	1	1
2nd Number (5)	0	1	0	1
Carry	1	1	1	0
Result (12)	1	1	0	0

Combinatorial Circuits (3)

- Design of Combinatorial Circuits (continued)
 - Truth table of a one bit full adder

а	b	c _i	c _o	У
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Combinatorial Circuits (4)

- Design of Combinatorial Circuits (continued)
 - Switching function y(a,b,c_i)

Combinatorial Circuits (5)

- Design of Combinatorial Circuits (continued)
 - Switching function c_o(a,b,c_i)

$$t_0 = a \land c_i$$

$$t_1 = b \land c_i$$

$$t_2 = a \land b$$

$$c_0 = t_0 \lor t_1 \lor t_2$$

Combinatorial Circuits (6)

- Design of Combinatorial Circuits (continued)
 - Both functions integrated in a circuit

Combinatorial Circuits (7)

- Design of Combinatorial Circuits (continued)
 - Four-bit Full Adder
 - Cascade of four one-bit full adders

Combinatorial Circuits (8)

- Design of Combinatorial Circuits (finished)
 - Integrated four bit half adder

