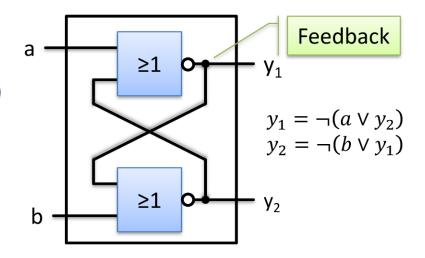


Flip-flops


Digital Electronics

Wolfgang Neff

Latches (1)

- SR Latch
 - Stores a bit
 - Two input lines (a, b)
 - Two output lines (y_1, y_2)
 - Implementation
 - Two NOR gates
 - Four input lines
 - Feedback
 - Two inputs come from feedbacks

Latches (2)

- SR Latch (continued)
 - Truth table

а	b	y ₁	y ₂	y ₁ ⁺	y ₂ ⁺
0	0	0	0	1	1
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	0	0
0	1	0	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
0	1	1	1	0	0

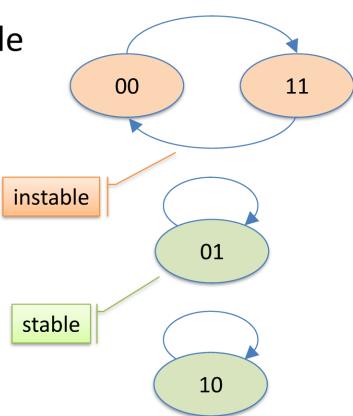
continues on the right side

Latches (3)

- SR Latch (continued)
 - Truth table

а	b	y ₁	y ₂	y ₁ ⁺	y ₂ ⁺		а	b	y ₁	y ₂	y ₁ ⁺	y ₂ ⁺
0	0	0	0	1	1	4 7	1	0	0	0	0	1
0	0	0	1	0	1	inst	1	0	0	1	0	1
0	0	1	0	1	0	nstable	1	0	1	0	0	0
0	0	1	1	0	0	• "	1	0	1	1	0	0
0	1	0	0	1	0	4	1	1	0	0	0	0
0	1	0	1	0	0		1	1	0	1	0	0
0	1	1	0	1	0		1	1	1	0	0	0
0	1	1	1	0	0		1	1	1	1	0	0

continues on the right side

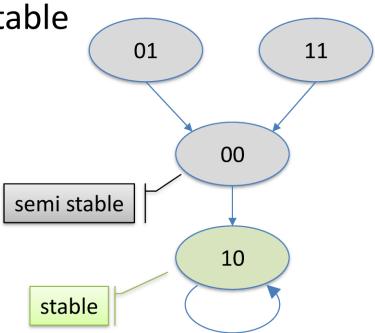


Latches (4)

SR Latch (continued)

First block of truth table

а	b	y ₁	y ₂	y ₁ +	y ₂ ⁺
0	0	0	0	1	1
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	0	0

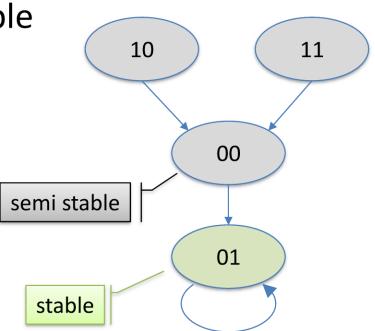


Latches (5)

• SR Latch (continued)

Second block of truth table

а	b	y ₁	y ₂	y ₁ ⁺	y ₂ ⁺
0	1	0	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
0	1	1	1	0	0

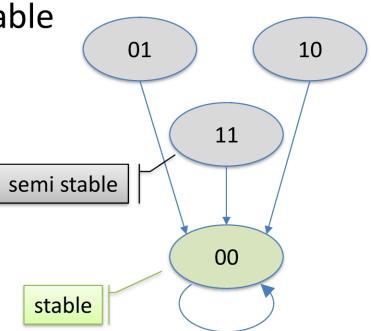


Latches (6)

SR Latch (continued)

Third block of truth table

а	b	y ₁	y ₂	y ₁ ⁺	y ₂ ⁺
1	0	0	0	0	1
1	0	0	1	0	1
1	0	1	0	0	0
1	0	1	1	0	0



Latches (7)

• SR Latch (continued)

Fourth block of truth table

а	b	y ₁	y ₂	y ₁ ⁺	y ₂ ⁺
1	1	0	0	0	0
1	1	0	1	0	0
1	1	1	0	0	0
1	1	1	1	0	0

Latches (8)

- SR Latch (continued)
 - Analysis of block a = 0 and b = 0

а	b	y ₁	y ₂	y ₁ +	y ₂ ⁺	Criterion
0	0	0	0	1	1	$y_1 = y_2$
0	0	0	1	0	1	$y_1 \neq y_2$
0	0	1	0	1	0	$y_1 \neq y_2$
0	0	1	1	0	0	$y_1 = y_2$

- There are stable and instable states
- The states are instable if $y_1 = y_2$
- The states are stable if $y_1 \neq y_2$ or $y_1 = \neg y_2$
- We must prohibit $y_1 = y_2$

Latches (9)

- SR Latch (continued)
 - Analysis of block a = 1 and b = 1

а	b	y ₁	y ₂	y ₁ ⁺	y ₂ ⁺
1	1	0	0	0	0
1	1	0	1	0	0
1	1	1	0	0	0
1	1	1	1	0	0

- All states end up in a stable state
- At the stable state there is $y_1 = y_2$
- $y_1 = y_2$ is prohibited
- We must prohibit a = 1 and b = 1

Latches (10)

- SR Latch (continued)
 - Analysis of block a = 0 and b = 1

а	b	y ₁	y ₂	y ₁ ⁺	y ₂ ⁺	Action
0	1	0	0	1	0	
0	1	0	1	0	0	
0	1	1	0	1	0	Set
0	1	1	1	0	0	

- All states end up in a stable state
- At the stable state there is $y_1 = \neg y_2$
- The stable state is okay
- At the stable state there is $y_1^+ = 1$ for sure

Latches (11)

- SR Latch (continued)
 - Analysis of block a = 1 and b = 0

а	b	y ₁	y ₂	y ₁ ⁺	y ₂ ⁺	Action
1	0	0	0	0	1	
1	0	0	1	0	1	Reset
1	0	1	0	0	0	
1	0	1	1	0	0	

- All states end up in a stable state
- At the stable state there is $y_1 = \neg y_2$
- The stable state is okay
- At the stable state there is $y_1^+ = 0$ for sure

Latches (12)

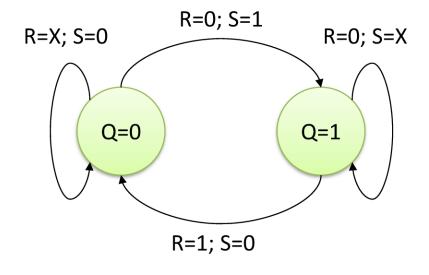
- SR Latch (continued)
 - Analysis of block a = 0 and b = 0 (continued)

а	b	y ₁	y ₂	y ₁ ⁺	y ₂ ⁺	Action
0	0	0	0	1	1	
0	0	0	1	0	1	Store
0	0	1	0	1	0	Store
0	0	1	1	0	0	

- The instable states are prohibited
- There are two stable states
- At the stable states there is $y_1^+ = y_1$ for sure

Latches (13)

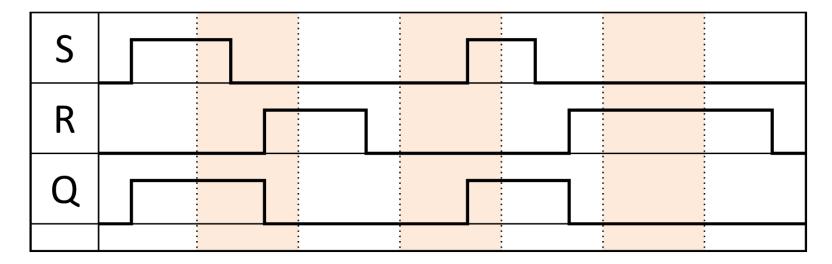
- SR Latch (continued)
 - Analysis
 - Renaming the lines
 - a = 0, b = 0 stable only if $y_1 \neq y_2$ or $y_1 = \neg y_2$ (new names: $y_1 = Q$, $y_2 = \neg Q$) if $y_1 \neq y_2$ then $Q^+ = Q$ (Q gets stored)
 - -a = 0, b = 1 always stable and $Q^+ = 1$ (Q gets set, new name: b = S)
 - -a = 1, S = 0 always stable and $Q^+ = 0$ (Q gets reset, new name: a = R)
 - -R = 1, S = 1 invalid because $y_1 = y_2$ and circuit might become instable


Latches (14)

SR Latch (continued)

State table

S	R	Q ⁺	Action
0	0	Q	Store
0	1	0	Reset
1	0	1	Set
1	1	X	Invalid

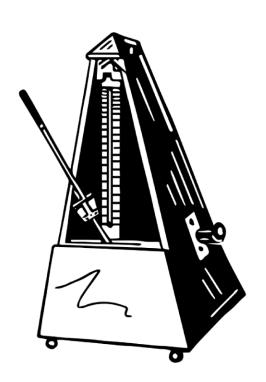

State diagram

Latches (15)

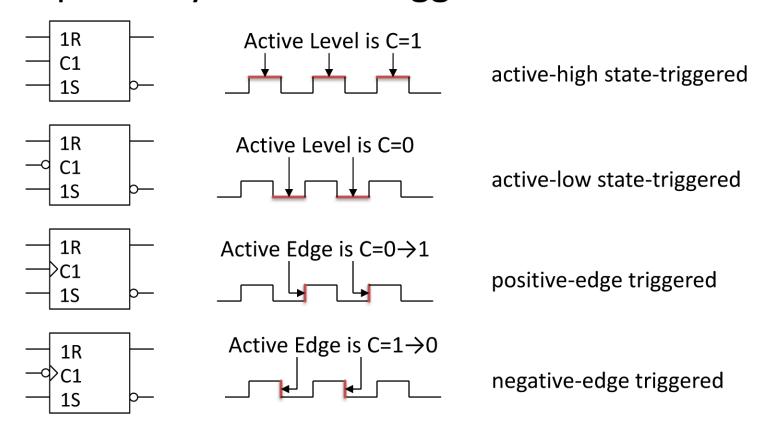
- SR Latch (finished)
 - Time diagram

Triggers (1)

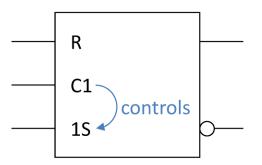
- Active and Inactive Inputs
 - Inputs are not always active
 - Active state
 - Input is considered
 - Output depends on input
 - Inactive state
 - Input is ignored
 - Input has no effect on output
 - Inputs can be triggered
 - Captured at certain times



Triggers (2)

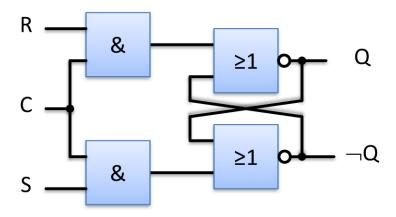

- Types of Triggers
 - Level triggers
 - State depends on level
 - 0: inactive, 1: active
 - Or vice versa
 - Edge triggers
 - State depends on change of level
 - $-0 \rightarrow 1$: active, $1 \rightarrow 0$: inactive
 - $-\uparrow$: active, \downarrow : inactive
 - Or vice versa

Triggers (3)


Graphical Symbols of Triggers

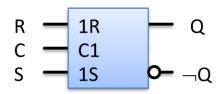
Triggers (4)

- Synchronous and Asynchronous Lines
 - Not every line is controlled by a clock
 - Synchronous lines are
 - Asynchronous lines are not



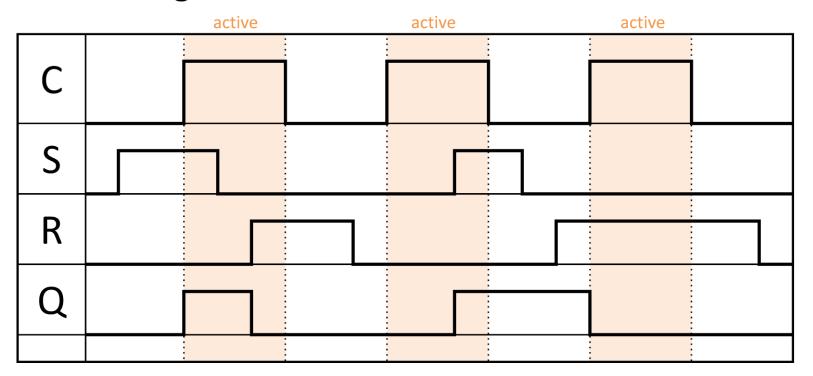
State-triggered SR flip-flop with synchronous set and asynchronous reset

Flip-flops (1)


- Synchronous SR Flip-flop
 - Level triggered, active state: 1
 - C=0: R und S may change, Q is stable
 - C=1: R und S must be stable, Q may change

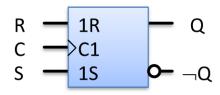
Flip-flops (2)

- Synchronous SR Flip-flop (level triggered, continued)
 - Symbol


State table

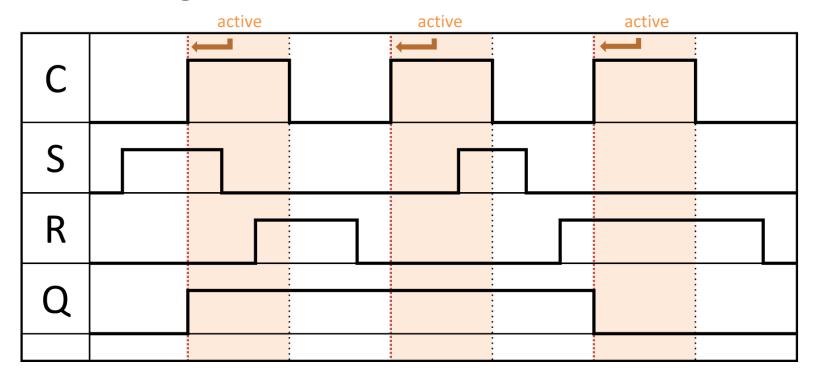
С	S	R	Q ⁺	Action
0	X	X	Q	Store
1	0	0	Q	Store
1	0	1	0	Reset
1	1	0	1	Set
1	1	1	X	Invalid

Flip-flops (3)


- Synchronous SR Flip-flop (level triggered, finished)
 - Time diagram (active state: 1)

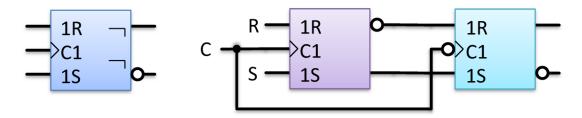
Flip-flops (4)

- Synchronous SR Flip-flop (edge triggered)
 - Symbol

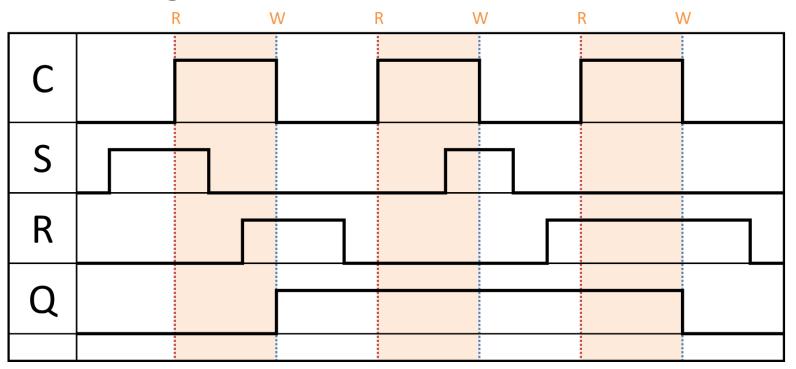

- State table

С	S	R	Q ⁺	Action
X	X	X	Q	Store
\uparrow	0	0	Q	Store
\uparrow	0	1	0	Reset
\uparrow	1	0	1	Set
\uparrow	1	1	X	Invalid

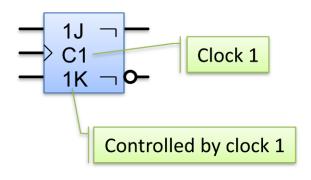
Flip-flops (5)


- Synchronous SR Flip-flop (edge triggered, continued)
 - Time diagram (positive edge triggered)

Flip-flops (6)

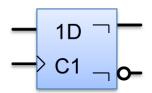

- Master-slave Flip-flop
 - Input and output are decupled
 - Output is delayed
 - Positive edge: input is read
 - Negative edge: output is written
 - Build with two edge triggered flip-flops

Flip-flops (7)


- Synchronous Master-slave SR Flip-flop
 - Time diagram (positive edge triggered)

Flip-flops (8)

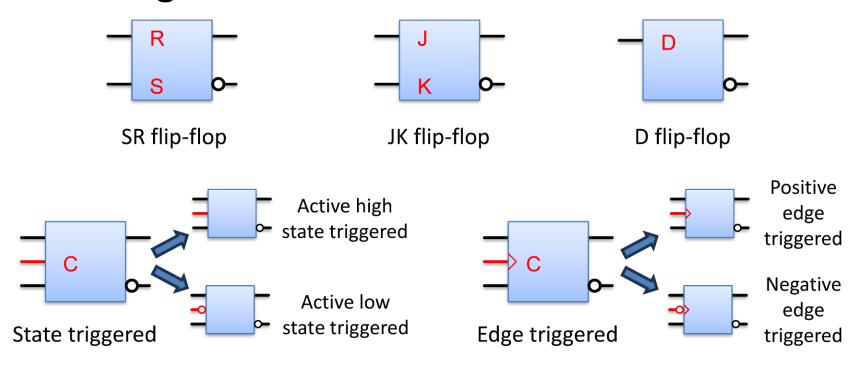
- JK Flip-flop
 - Similar to SR flip-flop
 - No invalid state
 - State gets toggled
 - Toggle: $Q^+ = \neg Q \ (0 \to 1, 1 \to 0)$



J	K	Q ⁺	Action
0	0	Q	Store
0	1	0	Reset
1	0	1	Set
1	1	¬Q	Toggle

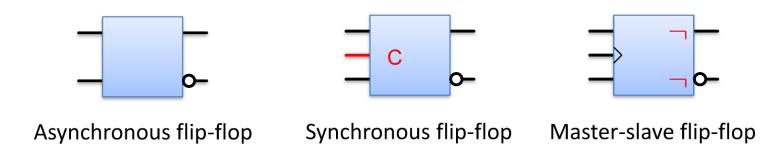
Flip-flops (9)

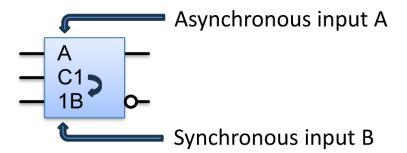
- D Flip-flop
 - Just one input
 - Controlled by clock
 - Input and output are decupled
 - Input read on positive edge
 - Output written on negative edge
 - Output changes only at certain times



D	Q ⁺	Action
0	0	Reset
1	1	Set

Flip-flops (10)


Naming conventions



Flip-flops (11)

Naming conventions (continued)

