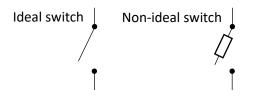
Transistors

Please do the following exercises individually.

Graphical symbols


Please draw the graphical symbol of a NPN BJT and an N-channel MOSFET. Do not forget to label the leads.

NPN and PNP transistors

Please describe the main differences between NPN and PNP transistors.

Transistor as switch

Transistors are non-ideal switches. Even closed they have a certain resistance.

A BC547 has a voltage drop of 0.2 V at a collector current of 0.1 A. Please calculate the resistance of this non-ideal switch in closed state.

Transistors

Please do the following exercises individually.

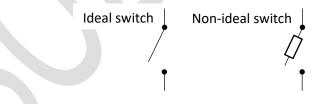
Graphical symbols

Please draw the graphical symbol of a NPN BJT and an N-channel MOSFET. Do not forget to label the leads.

NPN and PNP transistors

Please describe the main differences between NPN and PNP transistors.

Both transistors are bipolar. The sequence of junctions is n-p and p-n with NPN transistors and p-n and n-p with PNP transistors.


Both transistors need a base current. The base current of a NPN transistor flows into the base. The base current of a PNP transistor flows out of the base.

Both transistors need a voltage difference between Base and Emitter. U_{BE} is positive with NPN transistors and negative with PNP transistors.

If used as switch NPN transistors are active high and PNP transistors are active low.

Transistor as switch

Transistors are non-ideal switches. Even closed they have a certain resistance.

A BC547 has a voltage drop of 0.2 V at a collector current of 0.1 A. Please calculate the resistance of this non-ideal switch in closed state.

 $R = U/I = 0.2 V / 0.1 A = 2 \Omega$