NAND Form

Please do the following exercises individually.

NAND Form

Please find the NAND form of the following logical functions.

(A∧¬B) ∨ (¬A∧C) = ...

 $(C \land D) \lor (\neg C \land \neg D) = ...$

D∨(B∧C) = ...

 $D \lor (\neg B \land D) \lor (A \land B \land \neg C) = ...^{1}$

Compound NAND

Please prove that $\neg(a \land b \land c) \nleftrightarrow a |b|c$.

¹ Two 3-input NAND gates are used to realize this truth function. There is no logical operator for this kind of operation. So $\neg(a \land b)$ can be contracted to a | b but $\neg(a \land b \land c)$ cannot. Please see the next exercise for a proof.

NAND Form

Please do the following exercises individually.

NAND Form

Please find the NAND form of the following logical functions.

 $(A \land \neg B) \lor (\neg A \land C) = ... (A | (B | B)) | ((A | A) | C)$

 $(\mathsf{C} \land \mathsf{D}) \lor (\neg \mathsf{C} \land \neg \mathsf{D}) = \dots (\mathsf{C} | \mathsf{D}) | ((\mathsf{C} | \mathsf{C}) | (\mathsf{D} | \mathsf{D}))$

 $D \lor (B \land C) = ... (D | D) | (B | C)$

 $\mathsf{D} \lor (\neg \mathsf{B} \land \mathsf{D}) \lor (\mathsf{A} \land \mathsf{B} \land \neg \mathsf{C}) = ... \neg ((\mathsf{D} | \mathsf{D}) \land ((\mathsf{B} | \mathsf{B}) | \mathsf{D}) \land \neg (\mathsf{A} \land \mathsf{B} \land (\mathsf{C} | \mathsf{C})))$

Compound NAND

Please prove that $\neg(a \land b \land c) \nleftrightarrow a | b | c$.

			1	2	–(a∧b∧c)	3	(a b) c	4	a (b c)
а	b	С	a∧b	① ∧c	¬ ②	a b	3 c	b c	a 4)
0	0	0	0	0	1	1	1	1	1
0	0	1	0	0	1	1	0	1	1
0	1	0	0	0	1	1	1	1	1
0	1	1	0	0	1	1	0	0	1
1	0	0	0	0	1	1	1	1	0
1	0	1	0	0	1	1	0	1	0
1	1	0	1	0	1	0	1	1	0
1	1	1	1	1	0	0	1	0	1

AND is associative (order does not matter, $(a \land b) \land c \leftrightarrow a \land (b \land c)$) but NAND is not (order matters, $(a|b)|c \nleftrightarrow a|(b|c)$). This is another reason why both operations cannot be logical equivalent.