Design of Combinatorial Circuits I

Please do the following exercises individually.

Chip Production

The chips produced in a factory have got a four-bit serial number. There was a malfunction on one of the assembly lines. Every chip whose third bit is set are defective. Your boss asks you to design a digital circuit which sorts these chips out.

In order to design the digital circuit, please form the state table. Minimize the normal function with the aid of a Karnaugh map. The switching function can then be transformed into a digital circuit.

A XOR Gate with three Input Lines

Your client needs a XOR gate with three input lines. Please create a state table for $a \oplus b \oplus c$ and then design the gate for your client.

Design of Combinatorial Circuits I

Please do the following exercises individually.

Chip Production

а	b	С	d	y(a,b,c,d)
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

 $\begin{aligned} y(a,b,c,d) &= (\neg a \land b \land \neg c \land \neg d) \lor (\neg a \land b \land \neg c \land d) \lor \\ (\neg a \land b \land c \land \neg d) \lor (\neg a \land b \land c \land d) \lor (a \land b \land \neg c \land \neg d) \lor \\ (a \land b \land \neg c \land d) \lor (a \land b \land c \land \neg d) \lor (a \land b \land c \land d) \end{aligned}$

A XOR Gate with three Input Lines

b	С	a
0	0	0
0	1	1
1	0	1
1	1	0
0	0	1
0	1	0
1	0	0
1	1	1
	b 0 1 1 0 0 1 1 1	b c 0 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1

 $\begin{aligned} \mathsf{y}(\mathsf{a},\mathsf{b},\mathsf{c}) &= (\neg \mathsf{a} \land \neg \mathsf{b} \land \mathsf{c}) \lor (\neg \mathsf{a} \land \mathsf{b} \land \neg \mathsf{c}) \lor (\mathsf{a} \land \neg \mathsf{b} \land \neg \mathsf{c}) \\ \lor (\mathsf{a} \land \mathsf{b} \land \mathsf{c}) \end{aligned}$

Design of Combinatorial Circuits II

Please do the following exercises individually.

Demultiplexer

A demultiplexer is the counterpart of a multiplexer. Look at Wikipedia¹ to see the interplay of a multiplexer and a demultiplexer. Please design a two bit two way demultiplexer. Look at the following graphical symbol and formal description for details.

¹ http://en.wikipedia.org/wiki/Demultiplexer#Cost_savings

Design of Combinatorial Circuits II

Please do the following exercises individually.

Demultiplexer

A demultiplexer is the counterpart of a multiplexer. Look at Wikipedia² to see the interplay of a multiplexer and a demultiplexer. Please design a two bit two way demultiplexer. Look at the following graphical symbol and formal description for details.

Formal description

$$DX: \{0,1\}^3 \mapsto \{0,1\}^4$$
$$(s, a_1, a_0) \to (x_1, x_0, y_1, y_0) \coloneqq \begin{cases} (0,0, a_1, a_0) \text{ if } s = 0\\ (a_1, a_0, 0, 0) \text{ if } s = 1 \end{cases}$$

S	a1	a₀	X 1	X 0	y 1	y o
0	0	0	0	0	0	0
0	0	1	0	0	0	1
0	1	0	0	0	1	0
0	1	1	0	0	1	1
1	0	0	0	0	0	0
1	0	1	0	1	0	0
1	1	0	1	0	0	0
1	1	1	1	1	0	0

$$\begin{split} & x_1(s,a_1,a_0) = (s \land a_1 \land \neg a_0) \lor (s \land a_1 \land a_0) \\ & x_0(s,a_1,a_0) = (s \land \neg a_1 \land a_0) \lor (s \land a_1 \land a_0) \\ & y_1(s,a_1,a_0) = (\neg s \land a_1 \land \neg a_0) \lor (\neg s \land a_1 \land a_0) \\ & y_0(s,a_1,a_0) = (\neg s \land \neg a_1 \land a_0) \lor (\neg s \land a_1 \land a_0) \end{split}$$

$$x_1(s,a_1,a_0) = s \land a_1$$

 $x_0(s,a_1,a_0) = s \land a_0$
 $y_1(s,a_1,a_0) = \neg s \land a_1$
 $y_0(s,a_1,a_0) = \neg s \land a_0$

² http://en.wikipedia.org/wiki/Demultiplexer#Cost_savings

Design of Combinatorial Circuits III

Please do the following exercises individually.

Coder

A coder tells you which line is active. An interrupt controller may use a coder. If interrupt line three is active it requests the controller to execute interrupt no 3. Please design a four bit coder. Look at the following graphical symbol and formal description for details.

Please remember that undefined values are don't-care terms which may help to find a better optimization.

Design of Combinatorial Circuits III

Please do the following exercises individually.

Coder

A coder tells you which line is active. An interrupt controller may use a coder. If interrupt line three is active it requests the controller to execute interrupt no 3. Please design a four bit coder. Look at the following graphical symbol and formal description for details.

Formal description

Please remember that undefined values are don't-care terms which may help to find a better optimization.

a₃	a ₂	a1	a ₀	y 1	y o
0	0	0	0	Х	Х
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	Х	X
0	1	0	0	1	0
0	1	0	1	Х	x
0	1	1	0	X	Х
0	1	1	1	X	Х
1	0	0	0	1	1
1	0	0	1	Х	X
1	0	1	0	X	Х
1	0	1	1	Х	Х
1	1	0	0	X	X
1	1	0	1	Х	X
1	1	1	0	X	x
1	1	1	1	Х	Х

