Design of Sequential Circuits I

Please do the following exercises individually.

Bit sequences

Please design a sequential circuit which finds three subsequent Os in a bit stream.

A bit stream is a sequence of bits controlled by a clock signal.

Bit Stream	0	1	1	0	1	0
Read	1	↑	1	T T	†	t t
Clock						

The circuit should read the input stream and output a 1 if pattern 000 is found.

Design of Sequential Circuits I

Please do the following exercises individually.

Bit sequences

Please design a sequential circuit which finds three subsequent 0s in a bit stream.

State machine and encoding

State	Encoding			
-	0_{dec}	00_{bin}		
0	1_{dec}	01_{bin}		
00	2_{dec}	10_{bin}		
000	3_{dec}	11_{bin}		

Two D flip-flops necessary

Control logic

Q1	Q_0	а	Q1 ⁺	Q_0^+
0	0	0	0	1
0	0	1	0	0
0	1	0	1	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	1	1
1	1	1	0	0

Output logic and circuit

Q1	Q ₀	у
0	0	0
0	1	0
1	0	0
1	1	1

Design of Sequential Circuits II

Please do the following exercises individually.

Counter

Please design a mod-6 counter.

A counter counts impulses. These impulses are produced by the events which should be counted. A person triggers for example a light barrier when he or she enters a room. We want to know how many persons entered the room.

Counters have a certain range. Most counters restart from 0 when an overflow occurs. So if the range of a counter is 0 ... 5 the it counts 0, 1, 2, 3, 4, 5, 0, 1, Such a counter is called mod-6 counter.

Design of Sequential Circuits II

Please do the following exercises individually.

Counter

Please design a mod-6 counter.

State machine

State encoding and output logic

State	0	1	2	3	4	5
Encoding	000	001	010	011	100	101

Three D flip-flops necessary No output logic necessary

Control logic and circuit

n	Q₂	Q_1	Q₀	Q₂⁺	Q_1^+	Q₀⁺
0	0	0	0	0	0	1
1	0	0	1	0	1	0
2	0	1	0	0	1	1
3	0	1	1	1	0	0
4	1	0	0	1	0	1
5	1	0	1	0	0	0
6	1	1	0	Х	Х	Х
7	1	1	1	Х	Х	Х

